MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. AZ80A Magnesium

206.0 aluminum belongs to the aluminum alloys classification, while AZ80A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is AZ80A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
46
Elongation at Break, % 8.4 to 12
3.9 to 8.5
Fatigue Strength, MPa 88 to 210
140 to 170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
18
Shear Strength, MPa 260
160 to 190
Tensile Strength: Ultimate (UTS), MPa 330 to 440
320 to 340
Tensile Strength: Yield (Proof), MPa 190 to 350
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 570
490
Specific Heat Capacity, J/kg-K 880
990
Thermal Conductivity, W/m-K 120
77
Thermal Expansion, µm/m-K 19
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
11
Electrical Conductivity: Equal Weight (Specific), % IACS 99
59

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
1.7
Embodied Carbon, kg CO2/kg material 8.0
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
12 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
500 to 600
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
69
Strength to Weight: Axial, points 30 to 40
51 to 55
Strength to Weight: Bending, points 35 to 42
60 to 63
Thermal Diffusivity, mm2/s 46
45
Thermal Shock Resistance, points 17 to 23
19 to 20

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
7.8 to 9.2
Copper (Cu), % 4.2 to 5.0
0 to 0.050
Iron (Fe), % 0 to 0.15
0 to 0.0050
Magnesium (Mg), % 0.15 to 0.35
89 to 91.9
Manganese (Mn), % 0.2 to 0.5
0.12 to 0.5
Nickel (Ni), % 0 to 0.050
0 to 0.0050
Silicon (Si), % 0 to 0.1
0 to 0.1
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0.2 to 0.8
Residuals, % 0
0 to 0.3

Comparable Variants