MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN 1.3523 Steel

206.0 aluminum belongs to the aluminum alloys classification, while EN 1.3523 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN 1.3523 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
160 to 220
Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 330 to 440
520 to 1460

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
46
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.3
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
53

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 30 to 40
19 to 52
Strength to Weight: Bending, points 35 to 42
18 to 36
Thermal Diffusivity, mm2/s 46
12
Thermal Shock Resistance, points 17 to 23
15 to 42

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0 to 0.050
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0
1.0 to 1.3
Copper (Cu), % 4.2 to 5.0
0 to 0.3
Iron (Fe), % 0 to 0.15
96.5 to 97.9
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
1.1 to 1.4
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0