MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN 1.4421 Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while EN 1.4421 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN 1.4421 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
11 to 17
Fatigue Strength, MPa 88 to 210
380 to 520
Impact Strength: V-Notched Charpy, J 9.5
30 to 67
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 330 to 440
880 to 1100
Tensile Strength: Yield (Proof), MPa 190 to 350
620 to 950

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
960 to 2270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
31 to 39
Strength to Weight: Bending, points 35 to 42
26 to 30
Thermal Diffusivity, mm2/s 46
4.4
Thermal Shock Resistance, points 17 to 23
31 to 39

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
74.4 to 80.5
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.050
4.0 to 5.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants