MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN 1.4567 Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.4 to 12
22 to 51
Fatigue Strength, MPa 88 to 210
190 to 260
Impact Strength: V-Notched Charpy, J 9.5
91 to 110
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 260
390 to 490
Tensile Strength: Ultimate (UTS), MPa 330 to 440
550 to 780
Tensile Strength: Yield (Proof), MPa 190 to 350
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
100 to 400
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
19 to 27
Strength to Weight: Bending, points 35 to 42
19 to 24
Thermal Diffusivity, mm2/s 46
3.0
Thermal Shock Resistance, points 17 to 23
12 to 17

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 4.2 to 5.0
3.0 to 4.0
Iron (Fe), % 0 to 0.15
63.3 to 71.5
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.050
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0