MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN 1.4652 Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
270
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 8.4 to 12
45
Fatigue Strength, MPa 88 to 210
450
Impact Strength: V-Notched Charpy, J 9.5
90
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 260
610
Tensile Strength: Ultimate (UTS), MPa 330 to 440
880
Tensile Strength: Yield (Proof), MPa 190 to 350
490

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 120
9.8
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.4
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
340
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
30
Strength to Weight: Bending, points 35 to 42
25
Thermal Diffusivity, mm2/s 46
2.6
Thermal Shock Resistance, points 17 to 23
20

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 4.2 to 5.0
0.3 to 0.6
Iron (Fe), % 0 to 0.15
38.3 to 46.3
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0 to 0.050
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0