MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN 1.4903 Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while EN 1.4903 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN 1.4903 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.4 to 12
20 to 21
Fatigue Strength, MPa 88 to 210
320 to 330
Impact Strength: V-Notched Charpy, J 9.5
42 to 46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 260
420
Tensile Strength: Ultimate (UTS), MPa 330 to 440
670 to 680
Tensile Strength: Yield (Proof), MPa 190 to 350
500

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
650
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
4.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1150
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
24
Strength to Weight: Bending, points 35 to 42
22
Thermal Diffusivity, mm2/s 46
7.0
Thermal Shock Resistance, points 17 to 23
23

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0 to 0.040
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 4.2 to 5.0
0 to 0.3
Iron (Fe), % 0 to 0.15
87.1 to 90.5
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.050
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0