MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN 1.8880 Steel

206.0 aluminum belongs to the aluminum alloys classification, while EN 1.8880 steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN 1.8880 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
250
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.4 to 12
16
Fatigue Strength, MPa 88 to 210
470
Impact Strength: V-Notched Charpy, J 9.5
68
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 260
510
Tensile Strength: Ultimate (UTS), MPa 330 to 440
830
Tensile Strength: Yield (Proof), MPa 190 to 350
720

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.7
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1150
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
130
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
1370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 30 to 40
29
Strength to Weight: Bending, points 35 to 42
25
Thermal Diffusivity, mm2/s 46
11
Thermal Shock Resistance, points 17 to 23
24

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 1.5
Copper (Cu), % 4.2 to 5.0
0 to 0.3
Iron (Fe), % 0 to 0.15
91.9 to 100
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.050
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0