MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. SAE-AISI H11 Steel

206.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI H11 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is SAE-AISI H11 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 330 to 440
690 to 1840

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
42
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
5.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
75

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
25 to 66
Strength to Weight: Bending, points 35 to 42
22 to 43
Thermal Diffusivity, mm2/s 46
11
Thermal Shock Resistance, points 17 to 23
22 to 58

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0.33 to 0.43
Chromium (Cr), % 0
4.8 to 5.5
Copper (Cu), % 4.2 to 5.0
0 to 0.25
Iron (Fe), % 0 to 0.15
89.6 to 92.5
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0.2 to 0.5
Molybdenum (Mo), % 0
1.1 to 1.6
Nickel (Ni), % 0 to 0.050
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0.8 to 1.2
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.3 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0