MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. C85900 Brass

206.0 aluminum belongs to the aluminum alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
85
Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 8.4 to 12
30
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 330 to 440
460
Tensile Strength: Yield (Proof), MPa 190 to 350
190

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 650
830
Melting Onset (Solidus), °C 570
790
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 120
89
Thermal Expansion, µm/m-K 19
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
25
Electrical Conductivity: Equal Weight (Specific), % IACS 99
28

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 30 to 40
16
Strength to Weight: Bending, points 35 to 42
17
Thermal Diffusivity, mm2/s 46
29
Thermal Shock Resistance, points 17 to 23
16

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Copper (Cu), % 4.2 to 5.0
58 to 62
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.010
Nickel (Ni), % 0 to 0.050
0 to 1.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.1
0 to 0.25
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0 to 0.050
0 to 1.5
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7