MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. N06255 Nickel

206.0 aluminum belongs to the aluminum alloys classification, while N06255 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 8.4 to 12
45
Fatigue Strength, MPa 88 to 210
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 260
460
Tensile Strength: Ultimate (UTS), MPa 330 to 440
660
Tensile Strength: Yield (Proof), MPa 190 to 350
250

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 880
450
Thermal Expansion, µm/m-K 19
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.0
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
230
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 30 to 40
22
Strength to Weight: Bending, points 35 to 42
20
Thermal Shock Resistance, points 17 to 23
17

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 4.2 to 5.0
0 to 1.2
Iron (Fe), % 0 to 0.15
6.0 to 24
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0 to 0.050
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0