MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. R30556 Alloy

206.0 aluminum belongs to the aluminum alloys classification, while R30556 alloy belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 8.4 to 12
45
Fatigue Strength, MPa 88 to 210
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 260
550
Tensile Strength: Ultimate (UTS), MPa 330 to 440
780
Tensile Strength: Yield (Proof), MPa 190 to 350
350

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 570
1330
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
70
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.0
8.7
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
290
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 30 to 40
26
Strength to Weight: Bending, points 35 to 42
22
Thermal Diffusivity, mm2/s 46
2.9
Thermal Shock Resistance, points 17 to 23
18

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.050
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0.2 to 0.8
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0 to 0.1
0.0010 to 0.1
Residuals, % 0 to 0.15
0