MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. S35135 Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
34
Fatigue Strength, MPa 88 to 210
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 260
390
Tensile Strength: Ultimate (UTS), MPa 330 to 440
590
Tensile Strength: Yield (Proof), MPa 190 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 19
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
160
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 30 to 40
20
Strength to Weight: Bending, points 35 to 42
19
Thermal Shock Resistance, points 17 to 23
13

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 4.2 to 5.0
0 to 0.75
Iron (Fe), % 0 to 0.15
28.3 to 45
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0 to 0.050
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0.4 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0