MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. S46800 Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
180
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
25
Fatigue Strength, MPa 88 to 210
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 260
300
Tensile Strength: Ultimate (UTS), MPa 330 to 440
470
Tensile Strength: Yield (Proof), MPa 190 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
98
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
17
Strength to Weight: Bending, points 35 to 42
18
Thermal Diffusivity, mm2/s 46
6.1
Thermal Shock Resistance, points 17 to 23
16

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
76.5 to 81.8
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.050
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0.070 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0