MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. ACI-ASTM CF8C Steel

2095 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF8C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.5
40
Fatigue Strength, MPa 200
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 700
530
Tensile Strength: Yield (Proof), MPa 610
260

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
19
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1470
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
180
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 65
19
Strength to Weight: Bending, points 59
19
Thermal Diffusivity, mm2/s 49
4.3
Thermal Shock Resistance, points 31
11

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 3.9 to 4.6
0
Iron (Fe), % 0 to 0.15
61.8 to 73
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 2.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0