MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. EN 1.8834 Steel

2117 aluminum belongs to the aluminum alloys classification, while EN 1.8834 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is EN 1.8834 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
160
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 26
25
Fatigue Strength, MPa 95
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 200
340
Tensile Strength: Ultimate (UTS), MPa 300
530
Tensile Strength: Yield (Proof), MPa 170
360

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 220
410
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
47
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.4
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 33
19
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 91 to 97.6
0.015 to 0.034
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0 to 0.1
0 to 0.35
Copper (Cu), % 2.2 to 4.5
0 to 0.6
Iron (Fe), % 0 to 0.7
95.6 to 99.985
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.55
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.8
0 to 0.55
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0 to 0.060
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0