MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. Grade 9 Titanium

2124 aluminum belongs to the aluminum alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7
11 to 17
Fatigue Strength, MPa 130
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 280
430 to 580
Tensile Strength: Ultimate (UTS), MPa 490
700 to 960
Tensile Strength: Yield (Proof), MPa 430
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 640
1640
Melting Onset (Solidus), °C 500
1590
Specific Heat Capacity, J/kg-K 880
550
Thermal Conductivity, W/m-K 150
8.1
Thermal Expansion, µm/m-K 23
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
37
Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.2
36
Embodied Energy, MJ/kg 150
580
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
1380 to 3220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 45
43 to 60
Strength to Weight: Bending, points 46
39 to 48
Thermal Diffusivity, mm2/s 58
3.3
Thermal Shock Resistance, points 21
52 to 71

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.3
0 to 0.25
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.15
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4