MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. N08332 Stainless Steel

2124 aluminum belongs to the aluminum alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.7
34
Fatigue Strength, MPa 130
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 280
350
Tensile Strength: Ultimate (UTS), MPa 490
520
Tensile Strength: Yield (Proof), MPa 430
210

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 190
1050
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 500
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.2
5.4
Embodied Energy, MJ/kg 150
77
Embodied Water, L/kg 1150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 45
18
Strength to Weight: Bending, points 46
18
Thermal Diffusivity, mm2/s 58
3.1
Thermal Shock Resistance, points 21
12

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
17 to 20
Copper (Cu), % 3.8 to 4.9
0 to 1.0
Iron (Fe), % 0 to 0.3
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 2.0
Nickel (Ni), % 0
34 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0