MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. 712.0 Aluminum

Both 213.0 aluminum and 712.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
75 to 90
Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 1.5
4.5 to 4.7
Fatigue Strength, MPa 93
140 to 180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 190
250 to 260
Tensile Strength: Yield (Proof), MPa 130
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 410
380
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 480
610
Specific Heat Capacity, J/kg-K 850
870
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
40
Electrical Conductivity: Equal Weight (Specific), % IACS 94
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.2
3.0
Embodied Carbon, kg CO2/kg material 7.7
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1090
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
11
Resilience: Unit (Modulus of Resilience), kJ/m3 120
240 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
46
Strength to Weight: Axial, points 16
24 to 25
Strength to Weight: Bending, points 23
30 to 31
Thermal Diffusivity, mm2/s 49
62
Thermal Shock Resistance, points 8.0
11

Alloy Composition

Aluminum (Al), % 83.5 to 93
90.7 to 94
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 6.0 to 8.0
0 to 0.25
Iron (Fe), % 0 to 1.2
0 to 0.5
Magnesium (Mg), % 0 to 0.1
0.5 to 0.65
Manganese (Mn), % 0 to 0.6
0 to 0.1
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 1.0 to 3.0
0 to 0.3
Titanium (Ti), % 0 to 0.25
0.15 to 0.25
Zinc (Zn), % 0 to 2.5
5.0 to 6.5
Residuals, % 0
0 to 0.2