MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. ACI-ASTM CN3MN Steel

213.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN3MN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is ACI-ASTM CN3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
180
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.5
39
Fatigue Strength, MPa 93
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 190
620
Tensile Strength: Yield (Proof), MPa 130
300

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 850
460
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 94
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
33
Density, g/cm3 3.2
8.1
Embodied Carbon, kg CO2/kg material 7.7
6.2
Embodied Energy, MJ/kg 140
84
Embodied Water, L/kg 1090
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
200
Resilience: Unit (Modulus of Resilience), kJ/m3 120
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 49
3.4
Thermal Shock Resistance, points 8.0
14

Alloy Composition

Aluminum (Al), % 83.5 to 93
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 6.0 to 8.0
0 to 0.75
Iron (Fe), % 0 to 1.2
41.4 to 50.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.35
23.5 to 25.5
Nitrogen (N), % 0
0.18 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.5
0
Residuals, % 0 to 0.5
0