MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. Grade VDC Steel

213.0 aluminum belongs to the aluminum alloys classification, while grade VDC steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is grade VDC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
510
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 190
1700

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 670
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 94
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.9
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1090
47

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 16
60
Strength to Weight: Bending, points 23
40
Thermal Diffusivity, mm2/s 49
14
Thermal Shock Resistance, points 8.0
50

Alloy Composition

Aluminum (Al), % 83.5 to 93
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 6.0 to 8.0
0 to 0.060
Iron (Fe), % 0 to 1.2
98.3 to 99.35
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0.5 to 1.0
Nickel (Ni), % 0 to 0.35
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.0 to 3.0
0.15 to 0.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.5
0
Residuals, % 0 to 0.5
0