MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. C85900 Brass

213.0 aluminum belongs to the aluminum alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
85
Elastic (Young's, Tensile) Modulus, GPa 73
100
Elongation at Break, % 1.5
30
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 190
460
Tensile Strength: Yield (Proof), MPa 130
190

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 670
830
Melting Onset (Solidus), °C 480
790
Specific Heat Capacity, J/kg-K 850
390
Thermal Conductivity, W/m-K 130
89
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
25
Electrical Conductivity: Equal Weight (Specific), % IACS 94
28

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 3.2
8.0
Embodied Carbon, kg CO2/kg material 7.7
2.9
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 1090
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 44
20
Strength to Weight: Axial, points 16
16
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 49
29
Thermal Shock Resistance, points 8.0
16

Alloy Composition

Aluminum (Al), % 83.5 to 93
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Copper (Cu), % 6.0 to 8.0
58 to 62
Iron (Fe), % 0 to 1.2
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0 to 0.010
Nickel (Ni), % 0 to 0.35
0 to 1.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 1.0 to 3.0
0 to 0.25
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.5
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7