MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. N08801 Stainless Steel

213.0 aluminum belongs to the aluminum alloys classification, while N08801 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.5
34
Fatigue Strength, MPa 93
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 190
860
Tensile Strength: Yield (Proof), MPa 130
190

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 670
1390
Melting Onset (Solidus), °C 480
1360
Specific Heat Capacity, J/kg-K 850
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 94
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 3.2
8.0
Embodied Carbon, kg CO2/kg material 7.7
5.5
Embodied Energy, MJ/kg 140
79
Embodied Water, L/kg 1090
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120
92
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 16
30
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 49
3.3
Thermal Shock Resistance, points 8.0
20

Alloy Composition

Aluminum (Al), % 83.5 to 93
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 6.0 to 8.0
0 to 0.5
Iron (Fe), % 0 to 1.2
39.5 to 50.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0 to 1.5
Nickel (Ni), % 0 to 0.35
30 to 34
Silicon (Si), % 1.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0.75 to 1.5
Zinc (Zn), % 0 to 2.5
0
Residuals, % 0 to 0.5
0