MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. S40945 Stainless Steel

213.0 aluminum belongs to the aluminum alloys classification, while S40945 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
160
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.5
25
Fatigue Strength, MPa 93
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
75
Tensile Strength: Ultimate (UTS), MPa 190
430
Tensile Strength: Yield (Proof), MPa 130
230

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 670
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 850
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 94
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.0
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.2
Embodied Energy, MJ/kg 140
31
Embodied Water, L/kg 1090
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
89
Resilience: Unit (Modulus of Resilience), kJ/m3 120
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 16
15
Strength to Weight: Bending, points 23
16
Thermal Diffusivity, mm2/s 49
6.9
Thermal Shock Resistance, points 8.0
15

Alloy Composition

Aluminum (Al), % 83.5 to 93
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 6.0 to 8.0
0
Iron (Fe), % 0 to 1.2
85.1 to 89.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0 to 1.0
Nickel (Ni), % 0 to 0.35
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0.050 to 0.2
Zinc (Zn), % 0 to 2.5
0
Residuals, % 0 to 0.5
0