MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. 6182 Aluminum

Both 224.0 aluminum and 6182 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 4.0 to 10
6.8 to 13
Fatigue Strength, MPa 86 to 120
63 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 380 to 420
230 to 320
Tensile Strength: Yield (Proof), MPa 280 to 330
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 220
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 550
600
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
40
Electrical Conductivity: Equal Weight (Specific), % IACS 95
130

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
110 to 520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
50
Strength to Weight: Axial, points 35 to 38
23 to 32
Strength to Weight: Bending, points 38 to 41
30 to 38
Thermal Diffusivity, mm2/s 47
65
Thermal Shock Resistance, points 17 to 18
10 to 14

Alloy Composition

Aluminum (Al), % 93 to 95.2
95 to 97.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 4.5 to 5.5
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0.2 to 0.5
0.5 to 1.0
Silicon (Si), % 0 to 0.060
0.9 to 1.3
Titanium (Ti), % 0 to 0.35
0 to 0.1
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0.1 to 0.25
0.050 to 0.2
Residuals, % 0
0 to 0.15