MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. AISI 305 Stainless Steel

224.0 aluminum belongs to the aluminum alloys classification, while AISI 305 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is AISI 305 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 10
34 to 45
Fatigue Strength, MPa 86 to 120
210 to 280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 380 to 420
580 to 710
Tensile Strength: Yield (Proof), MPa 280 to 330
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 220
540
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
200 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
130 to 320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 35 to 38
20 to 25
Strength to Weight: Bending, points 38 to 41
20 to 23
Thermal Diffusivity, mm2/s 47
4.2
Thermal Shock Resistance, points 17 to 18
13 to 15

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
65.1 to 72.5
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Nickel (Ni), % 0
10.5 to 13
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.060
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0