MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. ASTM A387 Grade 22 Steel

224.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 22 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is ASTM A387 grade 22 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 10
21
Fatigue Strength, MPa 86 to 120
160 to 240
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 380 to 420
480 to 600
Tensile Strength: Yield (Proof), MPa 280 to 330
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 220
460
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 1150
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
85 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
140 to 320
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 35 to 38
17 to 21
Strength to Weight: Bending, points 38 to 41
17 to 20
Thermal Diffusivity, mm2/s 47
11
Thermal Shock Resistance, points 17 to 18
14 to 17

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
95.1 to 96.8
Manganese (Mn), % 0.2 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.060
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0