MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. ASTM A387 Grade 91 Class 2

224.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 10
20
Fatigue Strength, MPa 86 to 120
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 380 to 420
670
Tensile Strength: Yield (Proof), MPa 280 to 330
470

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
600
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 95
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 1150
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
120
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 35 to 38
24
Strength to Weight: Bending, points 38 to 41
22
Thermal Diffusivity, mm2/s 47
6.9
Thermal Shock Resistance, points 17 to 18
19

Alloy Composition

Aluminum (Al), % 93 to 95.2
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
87.3 to 90.3
Manganese (Mn), % 0.2 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.060
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.35
0 to 0.010
Vanadium (V), % 0.050 to 0.15
0.18 to 0.25
Zirconium (Zr), % 0.1 to 0.25
0 to 0.010
Residuals, % 0 to 0.1
0