MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. AWS ER100S-1

224.0 aluminum belongs to the aluminum alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 10
18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 380 to 420
770
Tensile Strength: Yield (Proof), MPa 280 to 330
700

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.6
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 160
24
Embodied Water, L/kg 1150
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
130
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 35 to 38
27
Strength to Weight: Bending, points 38 to 41
24
Thermal Diffusivity, mm2/s 47
13
Thermal Shock Resistance, points 17 to 18
23

Alloy Composition

Aluminum (Al), % 93 to 95.2
0 to 0.1
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 4.5 to 5.5
0 to 0.25
Iron (Fe), % 0 to 0.1
93.5 to 96.9
Manganese (Mn), % 0.2 to 0.5
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.4 to 2.1
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.060
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.35
0 to 0.1
Vanadium (V), % 0.050 to 0.15
0 to 0.050
Zirconium (Zr), % 0.1 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.5