MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN 1.0038 Steel

224.0 aluminum belongs to the aluminum alloys classification, while EN 1.0038 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN 1.0038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 10
23 to 25
Fatigue Strength, MPa 86 to 120
140 to 160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 380 to 420
380 to 430
Tensile Strength: Yield (Proof), MPa 280 to 330
200 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
72 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
110 to 130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 35 to 38
13 to 15
Strength to Weight: Bending, points 38 to 41
15 to 16
Thermal Diffusivity, mm2/s 47
13
Thermal Shock Resistance, points 17 to 18
12 to 13

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 4.5 to 5.5
0 to 0.6
Iron (Fe), % 0 to 0.1
97.1 to 100
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.060
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0