MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN 1.4371 Stainless Steel

224.0 aluminum belongs to the aluminum alloys classification, while EN 1.4371 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN 1.4371 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 10
45 to 51
Fatigue Strength, MPa 86 to 120
290 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 380 to 420
740 to 750
Tensile Strength: Yield (Proof), MPa 280 to 330
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 220
880
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 160
38
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
270 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
250 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 35 to 38
27
Strength to Weight: Bending, points 38 to 41
24
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 17 to 18
16

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 4.5 to 5.5
0 to 1.0
Iron (Fe), % 0 to 0.1
66.7 to 74.4
Manganese (Mn), % 0.2 to 0.5
6.0 to 8.0
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.060
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0