MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN 1.4854 Stainless Steel

224.0 aluminum belongs to the aluminum alloys classification, while EN 1.4854 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN 1.4854 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 10
45
Fatigue Strength, MPa 86 to 120
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 380 to 420
750
Tensile Strength: Yield (Proof), MPa 280 to 330
340

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 220
1170
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.3
5.7
Embodied Energy, MJ/kg 160
81
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
270
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 35 to 38
26
Strength to Weight: Bending, points 38 to 41
23
Thermal Diffusivity, mm2/s 47
2.9
Thermal Shock Resistance, points 17 to 18
18

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
33.6 to 40.6
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.060
1.2 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0