MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN 1.4872 Stainless Steel

224.0 aluminum belongs to the aluminum alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 10
28
Fatigue Strength, MPa 86 to 120
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 380 to 420
950
Tensile Strength: Yield (Proof), MPa 280 to 330
560

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 220
1150
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 550
1340
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
17
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
230
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
780
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
26
Strength to Weight: Axial, points 35 to 38
35
Strength to Weight: Bending, points 38 to 41
28
Thermal Diffusivity, mm2/s 47
3.9
Thermal Shock Resistance, points 17 to 18
21

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
54.2 to 61.6
Manganese (Mn), % 0.2 to 0.5
8.0 to 10
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.060
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0