MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN 1.4913 Stainless Steel

224.0 aluminum belongs to the aluminum alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 10
14 to 22
Fatigue Strength, MPa 86 to 120
320 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 380 to 420
870 to 980
Tensile Strength: Yield (Proof), MPa 280 to 330
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
700
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 120
24
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 1150
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
600 to 1860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 35 to 38
31 to 35
Strength to Weight: Bending, points 38 to 41
26 to 28
Thermal Diffusivity, mm2/s 47
6.5
Thermal Shock Resistance, points 17 to 18
31 to 34

Alloy Composition

Aluminum (Al), % 93 to 95.2
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
84.5 to 88.3
Manganese (Mn), % 0.2 to 0.5
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.060
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0.1 to 0.3
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0