MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN AC-41000 Aluminum

Both 224.0 aluminum and EN AC-41000 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 4.0 to 10
4.5
Fatigue Strength, MPa 86 to 120
58 to 71
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 380 to 420
170 to 280
Tensile Strength: Yield (Proof), MPa 280 to 330
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 390
420
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 550
630
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
38
Electrical Conductivity: Equal Weight (Specific), % IACS 95
130

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
46 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
51
Strength to Weight: Axial, points 35 to 38
18 to 29
Strength to Weight: Bending, points 38 to 41
26 to 35
Thermal Diffusivity, mm2/s 47
69
Thermal Shock Resistance, points 17 to 18
7.8 to 13

Alloy Composition

Aluminum (Al), % 93 to 95.2
95.2 to 97.6
Copper (Cu), % 4.5 to 5.5
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0.2 to 0.5
0.3 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.060
1.6 to 2.4
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.35
0.050 to 0.2
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0
0 to 0.15