MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. EN AC-42200 Aluminum

Both 224.0 aluminum and EN AC-42200 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 4.0 to 10
3.0 to 6.7
Fatigue Strength, MPa 86 to 120
86 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 380 to 420
320
Tensile Strength: Yield (Proof), MPa 280 to 330
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 550
600
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
40
Electrical Conductivity: Equal Weight (Specific), % IACS 95
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
410 to 490
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
53
Strength to Weight: Axial, points 35 to 38
34 to 35
Strength to Weight: Bending, points 38 to 41
40 to 41
Thermal Diffusivity, mm2/s 47
66
Thermal Shock Resistance, points 17 to 18
15

Alloy Composition

Aluminum (Al), % 93 to 95.2
91 to 93.1
Copper (Cu), % 4.5 to 5.5
0 to 0.050
Iron (Fe), % 0 to 0.1
0 to 0.19
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Silicon (Si), % 0 to 0.060
6.5 to 7.5
Titanium (Ti), % 0 to 0.35
0 to 0.25
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.070
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0
0 to 0.1