MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. Nickel 625

224.0 aluminum belongs to the aluminum alloys classification, while nickel 625 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 10
33 to 34
Fatigue Strength, MPa 86 to 120
240 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 380 to 420
790 to 910
Tensile Strength: Yield (Proof), MPa 280 to 330
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 550
1290
Specific Heat Capacity, J/kg-K 870
440
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
80
Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 8.3
14
Embodied Energy, MJ/kg 160
190
Embodied Water, L/kg 1150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
260 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 35 to 38
26 to 29
Strength to Weight: Bending, points 38 to 41
22 to 24
Thermal Diffusivity, mm2/s 47
2.9
Thermal Shock Resistance, points 17 to 18
22 to 25

Alloy Composition

Aluminum (Al), % 93 to 95.2
0 to 0.4
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
0 to 5.0
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.060
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.35
0 to 0.4
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0