MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. C90800 Bronze

224.0 aluminum belongs to the aluminum alloys classification, while C90800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is C90800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.0 to 10
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 380 to 420
330
Tensile Strength: Yield (Proof), MPa 280 to 330
170

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
990
Melting Onset (Solidus), °C 550
870
Specific Heat Capacity, J/kg-K 870
370
Thermal Conductivity, W/m-K 120
68
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
11
Electrical Conductivity: Equal Weight (Specific), % IACS 95
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.3
3.8
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 1150
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
35
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
140
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 35 to 38
11
Strength to Weight: Bending, points 38 to 41
12
Thermal Diffusivity, mm2/s 47
21
Thermal Shock Resistance, points 17 to 18
12

Alloy Composition

Aluminum (Al), % 93 to 95.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 4.5 to 5.5
85.3 to 89
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0.2 to 0.5
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 0 to 0.060
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
11 to 13
Titanium (Ti), % 0 to 0.35
0
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0