MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. N09777 Nickel

224.0 aluminum belongs to the aluminum alloys classification, while N09777 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 10
39
Fatigue Strength, MPa 86 to 120
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 380 to 420
580
Tensile Strength: Yield (Proof), MPa 280 to 330
240

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 220
960
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 870
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
38
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.3
7.4
Embodied Energy, MJ/kg 160
100
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
180
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 35 to 38
20
Strength to Weight: Bending, points 38 to 41
19
Thermal Shock Resistance, points 17 to 18
16

Alloy Composition

Aluminum (Al), % 93 to 95.2
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 19
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
28.5 to 47.5
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.060
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.35
2.0 to 3.0
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0