MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. S35135 Stainless Steel

224.0 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 10
34
Fatigue Strength, MPa 86 to 120
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 380 to 420
590
Tensile Strength: Yield (Proof), MPa 280 to 330
230

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.8
Embodied Energy, MJ/kg 160
94
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
160
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 770
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 35 to 38
20
Strength to Weight: Bending, points 38 to 41
19
Thermal Shock Resistance, points 17 to 18
13

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 4.5 to 5.5
0 to 0.75
Iron (Fe), % 0 to 0.1
28.3 to 45
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.060
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.35
0.4 to 1.0
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0