MakeItFrom.com
Menu (ESC)

224.0 Aluminum vs. S46500 Stainless Steel

224.0 aluminum belongs to the aluminum alloys classification, while S46500 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 224.0 aluminum and the bottom bar is S46500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 10
2.3 to 14
Fatigue Strength, MPa 86 to 120
550 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 380 to 420
1260 to 1930
Tensile Strength: Yield (Proof), MPa 280 to 330
1120 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 220
780
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 160
51
Embodied Water, L/kg 1150
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 35
43 to 210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 35 to 38
44 to 68
Strength to Weight: Bending, points 38 to 41
33 to 44
Thermal Shock Resistance, points 17 to 18
44 to 67

Alloy Composition

Aluminum (Al), % 93 to 95.2
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 4.5 to 5.5
0
Iron (Fe), % 0 to 0.1
72.6 to 76.1
Manganese (Mn), % 0.2 to 0.5
0 to 0.25
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0
10.7 to 11.3
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.060
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.35
1.5 to 1.8
Vanadium (V), % 0.050 to 0.15
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.1
0