MakeItFrom.com
Menu (ESC)

238.0 Aluminum vs. C84000 Brass

238.0 aluminum belongs to the aluminum alloys classification, while C84000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 238.0 aluminum and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
110
Elongation at Break, % 1.5
27
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
42
Tensile Strength: Ultimate (UTS), MPa 210
250
Tensile Strength: Yield (Proof), MPa 170
140

Thermal Properties

Latent Heat of Fusion, J/g 430
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
1040
Melting Onset (Solidus), °C 510
940
Specific Heat Capacity, J/kg-K 840
380
Thermal Conductivity, W/m-K 100
72
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
16
Electrical Conductivity: Equal Weight (Specific), % IACS 67
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 3.4
8.6
Embodied Carbon, kg CO2/kg material 7.4
3.0
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 1040
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9
58
Resilience: Unit (Modulus of Resilience), kJ/m3 180
83
Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 42
19
Strength to Weight: Axial, points 17
8.2
Strength to Weight: Bending, points 23
10
Thermal Diffusivity, mm2/s 37
22
Thermal Shock Resistance, points 9.1
9.0

Alloy Composition

Aluminum (Al), % 81.9 to 84.9
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 9.5 to 10.5
82 to 89
Iron (Fe), % 1.0 to 1.5
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 3.6 to 4.4
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 1.0 to 1.5
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7