MakeItFrom.com
Menu (ESC)

238.0 Aluminum vs. N06603 Nickel

238.0 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 238.0 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
190
Elongation at Break, % 1.5
28
Fatigue Strength, MPa 110
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 210
740
Tensile Strength: Yield (Proof), MPa 170
340

Thermal Properties

Latent Heat of Fusion, J/g 430
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 600
1340
Melting Onset (Solidus), °C 510
1300
Specific Heat Capacity, J/kg-K 840
480
Thermal Conductivity, W/m-K 100
11
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 67
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
50
Density, g/cm3 3.4
8.2
Embodied Carbon, kg CO2/kg material 7.4
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1040
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9
170
Resilience: Unit (Modulus of Resilience), kJ/m3 180
300
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 42
24
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 9.1
20

Alloy Composition

Aluminum (Al), % 81.9 to 84.9
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 9.5 to 10.5
0 to 0.5
Iron (Fe), % 1.0 to 1.5
8.0 to 11
Magnesium (Mg), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 3.6 to 4.4
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 1.0 to 1.5
0.010 to 0.1