MakeItFrom.com
Menu (ESC)

238.0 Aluminum vs. S15500 Stainless Steel

238.0 aluminum belongs to the aluminum alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 238.0 aluminum and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
190
Elongation at Break, % 1.5
6.8 to 16
Fatigue Strength, MPa 110
350 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
75
Tensile Strength: Ultimate (UTS), MPa 210
890 to 1490
Tensile Strength: Yield (Proof), MPa 170
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 430
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 840
480
Thermal Conductivity, W/m-K 100
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 67
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 3.4
7.8
Embodied Carbon, kg CO2/kg material 7.4
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 1040
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
890 to 4460
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 42
25
Strength to Weight: Axial, points 17
32 to 53
Strength to Weight: Bending, points 23
26 to 37
Thermal Diffusivity, mm2/s 37
4.6
Thermal Shock Resistance, points 9.1
30 to 50

Alloy Composition

Aluminum (Al), % 81.9 to 84.9
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 9.5 to 10.5
2.5 to 4.5
Iron (Fe), % 1.0 to 1.5
71.9 to 79.9
Magnesium (Mg), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.6 to 4.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 1.0 to 1.5
0