MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. 5454 Aluminum

Both 240.0 aluminum and 5454 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.0
2.3 to 18
Fatigue Strength, MPa 140
83 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 240
230 to 350
Tensile Strength: Yield (Proof), MPa 200
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 520
600
Specific Heat Capacity, J/kg-K 860
900
Thermal Conductivity, W/m-K 96
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
34
Electrical Conductivity: Equal Weight (Specific), % IACS 65
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 3.2
2.7
Embodied Carbon, kg CO2/kg material 8.7
8.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 280
68 to 590
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
50
Strength to Weight: Axial, points 20
23 to 36
Strength to Weight: Bending, points 26
30 to 41
Thermal Diffusivity, mm2/s 35
55
Thermal Shock Resistance, points 11
10 to 16

Alloy Composition

Aluminum (Al), % 81.7 to 86.9
94.5 to 97.1
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 7.0 to 9.0
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 5.5 to 6.5
2.4 to 3.0
Manganese (Mn), % 0.3 to 0.7
0.5 to 1.0
Nickel (Ni), % 0.3 to 0.7
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15