MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. AISI 301L Stainless Steel

240.0 aluminum belongs to the aluminum alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0
22 to 50
Fatigue Strength, MPa 140
240 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 240
620 to 1040
Tensile Strength: Yield (Proof), MPa 200
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 180
890
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 520
1390
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 65
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.7
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1100
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 280
160 to 1580
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 20
22 to 37
Strength to Weight: Bending, points 26
21 to 29
Thermal Diffusivity, mm2/s 35
4.1
Thermal Shock Resistance, points 11
14 to 24

Alloy Composition

Aluminum (Al), % 81.7 to 86.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 7.0 to 9.0
0
Iron (Fe), % 0 to 0.5
70.7 to 78
Magnesium (Mg), % 5.5 to 6.5
0
Manganese (Mn), % 0.3 to 0.7
0 to 2.0
Nickel (Ni), % 0.3 to 0.7
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0