MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. AISI 316Cb Stainless Steel

240.0 aluminum belongs to the aluminum alloys classification, while AISI 316Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is AISI 316Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0
34
Fatigue Strength, MPa 140
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 240
580
Tensile Strength: Yield (Proof), MPa 200
230

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 180
940
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 65
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 3.2
7.9
Embodied Carbon, kg CO2/kg material 8.7
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1100
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
160
Resilience: Unit (Modulus of Resilience), kJ/m3 280
130
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 35
4.1
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 81.7 to 86.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 7.0 to 9.0
0
Iron (Fe), % 0 to 0.5
60.9 to 72
Magnesium (Mg), % 5.5 to 6.5
0
Manganese (Mn), % 0.3 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.3 to 0.7
10 to 14
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0