MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. ASTM Grade HC Steel

240.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HC steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is ASTM grade HC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0
6.0
Fatigue Strength, MPa 140
96
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 240
430
Tensile Strength: Yield (Proof), MPa 200
200

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 520
1370
Specific Heat Capacity, J/kg-K 860
490
Thermal Conductivity, W/m-K 96
17
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 65
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
14
Density, g/cm3 3.2
7.6
Embodied Carbon, kg CO2/kg material 8.7
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1100
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
21
Resilience: Unit (Modulus of Resilience), kJ/m3 280
95
Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 43
26
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 26
16
Thermal Diffusivity, mm2/s 35
4.5
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 81.7 to 86.9
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 7.0 to 9.0
0
Iron (Fe), % 0 to 0.5
61.9 to 74
Magnesium (Mg), % 5.5 to 6.5
0
Manganese (Mn), % 0.3 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.3 to 0.7
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0