MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. EN 1.4913 Stainless Steel

240.0 aluminum belongs to the aluminum alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.0
14 to 22
Fatigue Strength, MPa 140
320 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 240
870 to 980
Tensile Strength: Yield (Proof), MPa 200
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 180
700
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 96
24
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 65
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.0
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.7
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1100
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 280
600 to 1860
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 20
31 to 35
Strength to Weight: Bending, points 26
26 to 28
Thermal Diffusivity, mm2/s 35
6.5
Thermal Shock Resistance, points 11
31 to 34

Alloy Composition

Aluminum (Al), % 81.7 to 86.9
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 7.0 to 9.0
0
Iron (Fe), % 0 to 0.5
84.5 to 88.3
Magnesium (Mg), % 5.5 to 6.5
0
Manganese (Mn), % 0.3 to 0.7
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0.3 to 0.7
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0