MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. EN 1.7378 Steel

240.0 aluminum belongs to the aluminum alloys classification, while EN 1.7378 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is EN 1.7378 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.0
17
Fatigue Strength, MPa 140
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 240
700
Tensile Strength: Yield (Proof), MPa 200
490

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 520
1430
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 96
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 65
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
4.0
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.7
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1100
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
110
Resilience: Unit (Modulus of Resilience), kJ/m3 280
630
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 43
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 35
10
Thermal Shock Resistance, points 11
20

Alloy Composition

Aluminum (Al), % 81.7 to 86.9
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
2.2 to 2.6
Copper (Cu), % 7.0 to 9.0
0
Iron (Fe), % 0 to 0.5
94.6 to 96.1
Magnesium (Mg), % 5.5 to 6.5
0
Manganese (Mn), % 0.3 to 0.7
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0.3 to 0.7
0
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0.15 to 0.45
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.050 to 0.1
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0