MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. Grade CW6M Nickel

240.0 aluminum belongs to the aluminum alloys classification, while grade CW6M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is grade CW6M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 1.0
29
Fatigue Strength, MPa 140
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 240
560
Tensile Strength: Yield (Proof), MPa 200
310

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 180
970
Melting Completion (Liquidus), °C 600
1530
Melting Onset (Solidus), °C 520
1470
Specific Heat Capacity, J/kg-K 860
430
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
65
Density, g/cm3 3.2
8.8
Embodied Carbon, kg CO2/kg material 8.7
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
140
Resilience: Unit (Modulus of Resilience), kJ/m3 280
220
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
23
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 26
17
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 81.7 to 86.9
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 7.0 to 9.0
0
Iron (Fe), % 0 to 0.5
0 to 3.0
Magnesium (Mg), % 5.5 to 6.5
0
Manganese (Mn), % 0.3 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
17 to 20
Nickel (Ni), % 0.3 to 0.7
54.9 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0